
The Serial Stommel Model in
FORTRAN

Luke Lonergan
High Performance Technologies, Inc.

Prototype Model Overview
After this exercise, we will have a well understood
prototype model implemented in FORTRAN
In the last section we learned that the Stommel model
is a linear partial differential equation with constant
coefficients:

�

�
�

�

�
=

∂
∂+∇

yL
y

x
παψβψγ sin2

We also defined a computational grid of points in
(x,y) and (i,j) coordinates:

Next step is to solve the equation approximately using
Fixed Point Iteration

interior grid points:
i=2,nx-1 ; j=2,ny-1

boundary points:

(i,1) & (i,ny) ; i=1,nx

(1,j) & (nx,j) ; j=1,ny

i, j

i,j-1

i+1,j
i-1,j

i,j+1

Discretization of the Equations

dx

ji

nnnnn
ji

fa

aaaa
jijijiji

,5

4321
1

, 1,1,,1,1

−

+++=
−+−+

+ ψψψψψ
The iterative equation is written:

Where the (n) denotes the “old” value and (n+1) is the
“new” value. Note that the forcing function doesn’t
change with each iteration, neither do the constants a1
through a5

Iterative Scheme

Flowchart for the Serial Code
Main
Program

NAMELIST

FORCING

RESTARTIN

COEFF

BCS

RESIDUAL

JACOBI

RESTARTOUT

Iterate for
ITCNT
Times

Develop the Basic Code Variables
Change directory to serial/step1
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step1/completed

Advanced:
Make any style changes and copy modified code to
serial/step2

Duration: 5 Minutes

Develop the Basic Code Structure
Change directory to serial/step2
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step2/completed

Advanced:
Make any style changes and copy modified code to
serial/step3

Duration: 5 Minutes

Develop A Runnable Code
Change directory to serial/step3
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step3/completed
Compile and link the code using

“make”
Execute the code, perhaps changing the dimensions
and iteration count
Time the code using

“time executable_name”

Basic Profile of the Code
Change directory to serial/step4
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step4/completed
Compile and link the code using

“make”
Execute the code and take note of the performance
Time the separate parts of the program, noting the
relative contributions

Runnable Code (Cont’d)
Advanced:

Make any style changes and copy modified code to
serial/step4

Duration: 10 Minutes

Basic Profiling (Cont’d)
Advanced:

Make any style changes and copy modified code to
serial/step5

Duration: 10 Minutes

Insertion of Basic Input/Ouput
Change directory to serial/step5
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step5/completed
Compile and link the code using

“make”
Execute the code and review the functionality of
the I/O
Experiment with restarting the code from the
previous run

Basic I/O (Cont’d)
Example:

stommel.x
mv psi.out psi.in
stommel.x
(etc.)

Try plotting the resulting solution using the
“plotter.x” program and GNUPlot

Example:
plotter.x
(enter the name of the solution file, e.g.
“psi.out”)
(Follow the directions for GNUPlot)

Basic I/O (Cont’d)

Advanced:
Make any style changes and copy modified code to
serial/step6

Duration: 15 Minutes

Measure Performance /Optimize
Change directory to serial/step6
Edit the README file
Recommended Approach:

Review the finished code example in
serial/step6/completed
Compile and link the code using

“make”
Execute the code and review the performance
baseline. Write down the first number for Mflops
you get and

Measure Performance /Optimize
try to improve it!

Note that there are a series of suggested approaches in
the README file. In order to use the completed
example code:

edit the Makefile and replace
main1.o with main2.o
recompile (type “make”)
execute the program
repeat with main2.o replaced with main3.o

Advanced:
Try running on different systems!

Duration: 15 Minutes

